5G for Connected and Automated Road Mobility in the European union

Matteo Gerosa, Fondazione Bruno Kessler
Andreas Heider-Aviet, Deutsche Telekom

IEEE 5G Virtual Summit
IEEE 5G for CAM
CONNECTED AND AUTOMATED MOBILITY
May 11th 2021

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825012
Agenda

• Project overview
• Use Cases and Trials
• Field measurements
• 5G Network assessment
• 5G Carmen solutions
• Q/A
Project Overview and Objectives

- The Bologna-Munich Corridor: ~600 Km across AT-AT-DE, interconnecting two-major industrial poles
- Elaborating and evaluating the **benefit of 5G and related Services for Automated Driving in real-world conditions**
- Ensuring Service Continuity in different cross-border scenarios, enabling CCAM and SAE Level 4
- Assessment of essential 5G KPIs for vehicle and MEC-based services to pave the road for European Mobility
The 5G-CARMEN trials
Demonstrating Level 4 Automated Driving

Two key use cases for connected and collaborative automated driving, targeting 5G connectivity to enable L4 automation, thanks to improved awareness of the surroundings, integrated Edge Services a dynamic end-to-end Service Orchestration:

• Cooperative and automated lane-change maneuvers
 • Centralized approach (MEC-Service based) showing low-latency V2N Communication
 • Decentralized approach based on V2N2V communication (optionally including RSU message relay)
 • Edge-Orchestrated ad-hoc Emergency Vehicle clearance

• Cooperative and automated in-lane maneuvers
 • Situation-depending MEC-vehicle Local Dynamic Map synchronization for cruise control
A vehicle needs to change lane from overtaking to first lane or vice-versa. It performs lateral control in level 4 (L4) thanks to a very accurate and timely awareness of the surroundings, enabled by 5G. The use case includes two sub-use cases: the cooperative lane merge in the new lane as originally planned by the AD vehicle, and the lane change in presence of oncoming emergency vehicles.
A vehicle needs to change lane from overtaking to first lane or vice-versa. It performs lateral control in level 4 (L4) thanks to a very accurate and timely awareness of the surroundings, enabled by 5G. The use case includes two sub-use cases: the cooperative lane merge in the new lane as originally planned by the AD vehicle, and the lane change in presence of oncoming emergency vehicles.
The 5G-CARMEN trials
Cooperative and automated lane-change maneuvers

Initial lane change intention (e.g. to overtake)

A vehicle needs to change lane from overtaking to first lane or vice-versa. It performs lateral control in level 4 (L4) thanks to a very accurate and timely awareness of the surroundings, enabled by 5G. The use case includes two sub-use cases: the cooperative lane merge in the new lane as originally planned by the AD vehicle, and the lane change in presence of oncoming emergency vehicles.
Non-equipped vehicle detected far behind. It moves at very high speed.
Next lane change may fall outside ODD.

A vehicle needs to change lane from overtaking to first lane or vice-versa. It performs lateral control in level 4 (L4) thanks to a very accurate and timely awareness of the surroundings, enabled by 5G. The use case includes two sub-use cases: the cooperative lane merge in the new lane as originally planned by the AD vehicle, and the lane change in presence of oncoming emergency vehicles.
The 5G-CARMEN trials
Cooperative and automated lane-change maneuvers

Decision: lane keeping

A vehicle needs to change lane from overtaking to first lane or vice-versa. It performs lateral control in level 4 (L4) thanks to a very accurate and timely awareness of the surroundings, enabled by 5G. The use case includes two sub-use cases: the cooperative lane merge in the new lane as originally planned by the AD vehicle, and the lane change in presence of oncoming emergency vehicles.
The 5G-CARMEN trials
Cooperative and automated In-lane maneuvers

A vehicle is on the first lane and plans to exit the motorway in moderate-high traffic situation, with vehicles in front obstructing the view. A queue or obstacle on the exit lane would require the driver to take over. Thanks to 5G, however, the vehicle can sense what the vehicle in front senses and thus decide to keep L4, and stay in lane, re-planning the exit without disturbing the driver (in such situation, an autonomous vehicle is expected to go L3 if it is not sure about the lane conditions in advance).
A vehicle is on the first lane and plans to exit the motorway in moderate-high traffic situation, with vehicles in front obstructing the view. A queue or obstacle on the exit lane would require the driver to take over. Thanks to 5G, however, the vehicle can sense what the vehicle in front senses and thus decide to keep L4, and stay in lane, re-planning the exit without disturbing the driver (in such situation, an autonomous vehicle is expected to go L3 if it is not sure about the lane conditions in advance).
A vehicle is on the first lane and plans to exit the motorway in moderate-high traffic situation, with vehicles in front obstructing the view. A queue or obstacle on the exit lane would require the driver to take over. Thanks to 5G, however, the vehicle can sense what the vehicle in front senses and thus decide to keep L4, and stay in lane, re-planning the exit without disturbing the driver (in such situation, an autonomous vehicle is expected to go L3 if it is not sure about the lane conditions in advance).
Tests and Trials

• **Field tests and 5G Rollout delayed** due to COVID-19 (e.g. Site access for MEC installation, Austrian borders temporarily closed...)

• **Integration and functionality/performance tests** for 5G/AD Enabler (e.g. V2X, MEC Services AMQP, GeoService, BSAF, S-LDM, Precise Positioning) ongoing

• Cross-border trials restarting (at the latest) **09/2021**
Architecture

E2E integration

- Use case specific Services
- Harmonized cross-border
The current border situation
(similarly at most European borders)

• 5G NSA with 4G and 5G RAN at country borders (5G NR in Q3 2021)

• No inter-PLMN handover
 (required cross-border inter-MNO Core Network Interface not available)

• Network Re-selection:
 • **UEs stick to the Home Network as long as it is available** (down to lower bands/RATs)
 • UE get disconnected and scan frequencies to find any other network to re-attach

• **Connectivity gap of ~10s – 100s**
Local assessment (focus on 5G and invited paper)

Realistic deployment scenarios

Modelling of the Brennerpass area

- Applying various traffic densities (using real Road Operator data) and radio propagation conditions
- Different deployment scenarios and RATs (5G NR and V2N LTE, V2I and V2V PC5-Mode4), incl Multi-RAT
- Varying 5G settings and KPIs (e.g. message delay impact)
- Slice resource management: different data traffic requirements coexisting on the same 5G resources
- E2E scalability (e.g. manoeuver success rate) depending on road traffic and penetration rate (equipped vehicles)
RAN: cross-border inter-gNB (Xn) interfaces required, but

- Physical connections very expensive and (even if tunneled via N32) technically/operationally complex to integrate
- Anyways not sufficient information for MNO-internal E2E Network Management (OSS)

Network Management

- Governing several technology generations (2G-5G) and different equipment (vendors) in parallel
- Focus on radio planning/optimization (e.g. cell tower sites) and seamless operations, both on a national level
Network interconnections via IPX

- Dedicated backbone connections via IPX provider and peering points (e.g. AMS-IX, DE-CIX, LINX...)
- **Security:** Trust between IPX provider and MNOs (SEPP for N32, certificate handling etc WGs at GSMA)
- E2E SLAs: guaranteed performance, quality and security (recently standardized, implementation lengthy)
- **Latency:**
 - Optimized routing and traffic steering for better RTTs (e.g via classification and regional prefixes, now standardized)
 - Same discussion as for MEC: costs vs. need
Practical cross-border improvements

5G for CCAM in Europe also depends on non-technical considerations

- The cross-border network situation will **often remain inter-RAT, thus hardly seamless**

- 5G-Carmen introduces an **accelerated network re-selection** (<1s in laboratory tests)
 - Foreign PLMN as “equivalent PLMN” -> **UE does not stick to the Home Network**
 - **Cell Neighbor Relations** with “foreign cells” and RAN **cell redirection procedures**
 -> indicating (preferred) foreign cells directly to the UE (discarding lengthy frequency scan)
 - **Shared, secure distributed database for inter-MNO RAN data sharing** (cell PCIs, frequencies etc)

- **RAN (Network Governance) data sharing is also required for the inter-PLMN handover**
 -> GSMA activity started for a non-discriminatory European (border area) database

- Pearse O'Donohue (DG CONNECT) statement on May 5th 2021 at the 6G Symposium:
Thanks!

Matteo Gerosa, Fondazione Bruno Kessler
Andreas Heider-Aviet, Deutsche Telekom

WWW: www.5gcarmen.eu
Twitter: @5g_carmen
LinkedIn: https://www.linkedin.com/company/5g-carmen/
Backup
Additional activities (non-exhaustive)

• **RNIS-based RAN control**: Managing UE priorities for ongoing manoeuvres

• Inter-domain E2E Service Orchestration, **on-demand instantiation**

• Cross-border message broker (AMQP and location-based GeoService)

• **E2E security**: Combining Secure Elements, token-based authentication, AI-based Intrusion Detection and Classification

• Edge service continuity enablers (-> Technical Sessions)
 • Inter-MEC operations and demand prediction
 • Optimized application-context relocation approach
Simulation setup

- Environment [UNITY]
 - Digital 3D terrain model
 - Deterministic path loss [Proprietary SW]
 - BS-wise path loss maps
 - Link-wise connectivity traces

- Road layout, physical mobility/traffic & Sensors [4DV-SIM]
- Mobility traces
- Sensor data traces

- 5G V2X connectivity [ns-3]
 - Cross-layer protocol & network-level simulation
 - Connectivity KPIs
 - Automotive KPIs

- Automotive applications [Matlab]
 - Cooperative Lane Merging, Back Situation Awareness, Vehicle-Sensor & State Sharing...
 - Coverage perf
 - Delivery success perf
 - Latency perf
 - Reliability perf
 - Availability perf

- Joint connectivity & automotive application perf. evaluations [Matlab]